The Linear Flows in the Space of Krichever-lax Matrices over an Algebraic Curve

نویسنده

  • TAEJUNG KIM
چکیده

In [8], I. M. Krichever invented the space of matrices parametrizing the cotangent bundle of moduli space of stable vector bundles over a compact Riemann surface, which is named as the Hitchin system after the investigation [5]. We study a necessary and sufficient condition for the linearity of flows on the space of Krichever-Lax matrices in a Lax representation in terms of cohomological classes using the similar technique and analysis from the work [4] by P. A. Griffiths.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

m-Projections involving Minkowski inverse and range symmetric property in Minkowski space

In this paper we study the impact of Minkowski metric matrix on a projection in the Minkowski Space M along with their basic algebraic and geometric properties.The relation between the m-projections and the Minkowski inverse of a matrix A in the minkowski space M is derived. In the remaining portion commutativity of Minkowski inverse in Minkowski Space M is analyzed in terms of m-projections as...

متن کامل

ar X iv : m at h / 99 02 06 8 v 2 [ m at h . A G ] 6 M ar 1 99 9 SPECTRAL CURVES , OPERS AND INTEGRABLE SYSTEMS

We establish a general link between integrable systems in algebraic geometry (expressed as Jacobian flows on spectral curves) and soliton equations (expressed as evolution equations on flat connections). Our main result is a natural isomorphism between a moduli space of spectral data and a moduli space of differential data, each equipped with an infinite collection of commuting flows. The spect...

متن کامل

2 00 1 Spectral Curves , Opers and Integrable Systems

We establish a general link between integrable systems in algebraic geometry (expressed as Jacobian flows on spectral curves) and soliton equations (expressed as evolution equations on flat connections). Our main result is a natural isomorphism between a moduli space of spectral data and a moduli space of differential data, each equipped with an infinite collection of commuting flows. The spect...

متن کامل

ar X iv : m at h / 99 02 06 8 v 3 [ m at h . A G ] 1 8 N ov 1 99 9 SPECTRAL CURVES , OPERS AND INTEGRABLE SYSTEMS

We establish a general link between integrable systems in algebraic geometry (expressed as Jacobian flows on spectral curves) and soliton equations (expressed as evolution equations on flat connections). Our main result is a natural isomorphism between a moduli space of spectral data and a moduli space of differential data, each equipped with an infinite collection of commuting flows. The spect...

متن کامل

A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).

This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008